Slide background
Bilgi İşlem Daire Başkanlığı

Meü

Slide background
Bilgi İşlem Daire Başkanlığı

Meü

Slide background
Bilgi İşlem Daire Başkanlığı

Meü

Slide background
Bilgi İşlem Daire Başkanlığı

Meü

Slide background
Bilgi İşlem Daire Başkanlığı

Meü

Slide background
Bilgi İşlem Daire Başkanlığı

Meü

Slide background
Bilgi İşlem Daire Başkanlığı

Meü

Uygulamalı Matematik Anabilim Dalı

İçerik Hazırlanıyor

Son İki Yılda Uluslararası Dergilerde Yayınlanan Makaleler

2024
16. Demirbilek, U.; Nadeem, M.; çelik, F.; Bulut, H.; şenol, M. Generalized extended (2+1)-dimensional Kadomtsev-Petviashvili equation in fluid dynamics: analytical solutions, sensitivity and stability analysis. NONLINEAR DYNAMICS, 2024, 112, 1-16.
10.1007/s11071-024-09724-3
15. Göktaş, S.; öner, A.; Gürefe, Y. The Extended Weierstrass TransformationMethod for the Biswas-Arshed Equation with Beta Time Derivative. FRACTAL AND FRACTIONAL, 2024, , 1-20.
14. Long, L.; Gürefe, Y.; Moghaddam, B. Fractional Tikhonov regularization and error estimation in inverse source problems for Biharmonic equations: a priori and a posteriori analysis under deterministic and random perturbations. NUMERICAL ALGORITHMS, 2024, , 1-24.
10.1007/s11075-024-01955-0
13. Nam, B.; Huynh, L.; Long, L.; Gürefe, Y. On terminal value problem for fractional superdiffusive of Sobolev equation type. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS - S, 2024, 17, 1195-1207.
10.3934/dcdss.2023172
12. Batool, F.; Suleman, M.; Demirbilek, U.; Rezazadeh, H.; Khedher, K.; Alsulamy, S.; Ahmad, H. Studying the impacts of M-fractional and beta derivatives on the nonlinear fractional model. OPTICAL AND QUANTUM ELECTRONICS, 2024, 56, 164-.
10.1007/s11082-023-05634-7
11. Gülşen, T.; Göktaş, S.; Abdeljawad, T.; Gürefe, Y. Sturm-Liouville problem in multiplicative fractional calculus. AIMS MATHEMATICS, 2024, 9, 22794-22812.
10.3934/math.20241109
10. Tariq, H.; Ashraf, H.; Rezazadeh, H.; Demirbilek, U. Travelling wave solutions of nonlinear conformable Bogoyavlenskii equations via two powerful analytical approaches. APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES, 2024, 39, 502-518.
10.1007/s11766-024-5030-7
9. Long, L.; Mınh, V.; Gürefe, Y.; Pandır, Y. GLOBAL EXISTENCE AND CONTINUOUS DEPENDENCE ON PARAMETERS OF CONFORMABLE PSEUDO-PARABOLIC INCLUSION. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14, 986-1005.
10.11948/20230246
8. Kışoğlu, H.; Ala, V. Analytical investigation of a Dirac particle dynamics in a hyperbolic magnetic field with position-dependent mass: exact solutions and ladder operators. PHYSICA SCRIPTA, 2024, 100, -.
10.1088/1402-4896/ada078
7. Batool, F.; Rezazadeh, Â.; Ali, Z.; Demirbilek, U. Exploring soliton solutions of stochastic Phi-4 equation through extended Sinh-Gordon expansion method. OPTICAL AND QUANTUM ELECTRONICS, 2024, 56, -.
10.1007/s11082-024-06385-9
6. şenol, M.; Gençyiğt, M.; Demirbilek, U.; Az-zo’bi, E. Sensitivity and wave propagation analysis of the time-fractional (3+1)-dimensional shallow water waves model. ZEITSCHRIFT FÜR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75, -.
10.1007/s00033-024-02216-9
5. Nan, T.; Baber, M.; Ahmed, N.; Iqbal, M.; Demirbilek, U.; Rezazadeh, H. Effects of Brownian motion on solitary wave structures for 1D stochastic Poisson–Nernst–Planck system in electrobiochemical. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2024, , -.
10.1142/S0219887824502256
2023
4. Pandır, Y.; Gürefe, Y. A New Version of the Generalized F-Expansion Method for the Fractional Biswas-Arshed Equation and Boussinesq Equation with the Beta-Derivative. JOURNAL OF FUNCTION SPACES, 2023, 2023, 1-14.
10.1155/2023/1980382
3. Pandır, Y.; Aktürk, T.; Gürefe, Y.; Juya, H. The Modified Exponential Function Method for Beta Time Fractional Biswas-Arshed Equation. ADVANCES IN MATHEMATICAL PHYSICS, 2023, 2023, 1-18.
10.1155/2023/1091355
2. Yasmın, H.; Pandır, Y.; Aktürk, T.; Gürefe, Y. Exact Solutions of the Stochastic Conformable Broer–Kaup Equations. AXIOMS, 2023, 12, 1-32.
10.3390/axioms12090889
1. Demirbilek, U.; Reşidoğlu, H. Application of IBSEF Method to Chaffee–Infante Equation in (1 + 1) and (2 + 1) Dimensions. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2023, 63, 1444-1451.
10.1134/S0965542523080067